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Abstract. A model is introduced to simulate irreversible wetting in a two-dimensional 
lattice system in which a fixed number of carriers. each diffusing from the source, wet the 
dry Sites an their trail. We find that the propagation of  the front of the wet phase is diffusive. 
The interface width is found to increase as a power ofthe average height with the exponent 
p ~ 0 . 7 4 .  In a system of  finite sire L the width saturates to a constant value in the long 
time limit. The saturated interface width scales as L’ with a - 1. 

Recently there has been considerable interest in understanding the dynamics of non- 
equilibrium interface growth phenomena [l] in the context of a variety of models, 
analytical theories and experiments. A classic example is the dynamics of the motion 
of the interface between a wetting fluid, like water, and a dry surface which is being 
wetted irreversibly as the fluid front moves forward. In this letter we present a simple 
model to simulate this sort of irreversible wetting in a lattice system and we study the 
dynamics of the interface. 

Much of the recent interest in the study of the dynamics of interfaces has been 
based on the fact that surface fluctuations exhibit scaling behaviour in both time and 
space. In particular, assuming an initially flat interface, the scaling of the width of a n  
interface is expected to be of the form [Z] 

w(L,  i)= L y ( i / L ’ )  

where w(L,  i?) is the interface width on length scale L and i? is the average height of 
the interface. The dynamic exponent z =  a l p ,  and the scaling function J ( x ) - x a  for 
X K  1 and J ( x ) +  constant for x >> 1. Consequently, most of the recent investigations of 
the scaling properties of surfaces and interfaces are focused on the determination of 
the exponents n and p, and on the analysis of the dynamical scaling in surface and 
interface growth. A variety of the models [l]  (including aggregation, deposition and 
Eden models) in two dimensions seem to give the values a = f  and p = f  in agreement 
with the analytical results of Kardar et a/ [3] (KPZ) based on a nonlinear Langevin-type 
equation. However, more recently it has been shown that in experiments on two-fluid 
flow in porous media [4,5] and in a number of models [6-101, the exponents are 
anomaious and bo noi agree wiih ihe KPZ resuii. in mosi of ihe previous siudies, either 
the growth of the height with time is not analysed in detail or the mean front is found 
to grow linearly with time except in a few studies [ l l ]  where the front is found t o  
evolve non-diffusively. Here we introduce and study the dynamics of the interface in 
a model consisting of a fixed number of carriers, each diffusing from the source, which 
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wet the dry sites on their trail on a two-dimensional lattice. The interface separating 
the wetted region from the dry region resembles the front in the flow of a wetting fluid 
into a porous media. 

We consider a two-dimensional lattice of width L and infinite length, which is 
initially considered to be dry. A reservoir source of wetting fluid is connected with all 
the sites at the shorter side of the lattice. Wetting particles (the carriers) are then placed 
at each lattice site connected to the reservoir of the wetting fluid. In this model we 
assume that there is a hard-core interaction between the particles so that a lattice site 
cannot be occupied by more than one particle at any given time. Furthermore, unlike 
gradient-induced percolation [12], we have used a fixed number, L, of particles in our 
simulations. The wetting particles perform random walks on the lattice and all the 
lattice sites occupied or visited by particles become permanently wet. The particles 
spread the fluid into the dry lattice as they execute their stochastic motion with the 
following tule. We randomly select a particle at a site i and one of its neighbouring 
sites j .  If the site j is empty, then the particle is moved from site i to site j; the site j 
becomes permanently wet, if it was dry before. If randomly selected site j is occupied 
by another carrier, then an attempt to move the particle from site i to site j fails and 
the particle remains at site i. An attempt to move each particle once is defined as one 
Monte Carlo step (MCS) time. We use a periodic boundary condition along the 
transverse ( y )  direction, and an open (reflecting) boundary condition at the source. 
In the simulations the length along the infinite direction (x) is chosen such that the 
particles never reach the opposite side of the source. 

We note that our choice of exactly L walkers and the hard-core interaction are not 
important restrictions of the model. We used L particles for simulational convenience, 
but any finite value of L can be chosen by feeding in particles continuously at the 
source. Similarly, we introduced the hard-core repulsion in order to simulate real 
particles, but we expect that in the long time limit this exclusion principle might be 
irrelevant. We plan to extend this work by carrying out further studies with different 
number of walkers and with different types of interacting and non-interacting diffusers. 
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Fizure 1. Mean front position h vcrsus time on a log-log plot. Samples of  width L = 500, 
400, 200, IOU, 50, 25 are used with up to 500 independent runs. 
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Figure 2. Width of the  interface w versus i o n  a log-log plot for length L=25,40, SO, 60, 
i 5 ,  100, iU0, 400 and 500 with the same statistics as in @e i. line siope oi the h e a r  
region (before the saluration) is about 0.74. 
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Figure 3. Saturated interface width W versus size L on a log-lag plot. The slope is 
around 1. 

The fluid front moves into the dry lattice and an interface develops between the 
wet and the dry phase of the lattice as the particles execute their stochastic hopping. 
w e  have studied in detaii boih ihe moiion of ihe wei froni and ihe growih of ihe 
interface width as a function of time for several sample sizes each with a number of 
independent runs. We define the height h ( i )  on the front as the last wet site in row i. 
This amounts to ignoring the overhangs which are not assumed to play an important 
role in wetting phenomena and in this model. The average position of the front 6 is 
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defined by n=X:=, h ( i ) / L .  A typical plot of the mean front position B versus time f 
is shown in figure 1; the slope of the log-log plot leads to an exponent k = t in B- f x .  
This indicates that the front moves diffusively. 

The width of the interface, w(L,  I ) ,  is defined as the standard deviation of the 
heights h ( i )  and is computed from the relation w(L,  fj*=I;)=, ( h ( i ) - k ) 2 / L .  The plot 
of the interface width w versus is presented in figure 2 on a log-log plot. We find 
that w - iB with the exponent p = 0.74+0.04 (see the data with large samples, L = 400 
and 500). We have also analysed the size dependence of the interface width with sizes 
ranging from L =  25 to 500. However, we have achieved the saturation in width only 
up to L=200;  the larger samples require much more computer time for a reliable 
estimate. A plot of the saturated interface width versus L is shown in figure 3. In the 
asymptotic regime, w - L" and we find a = 1. Our estimates of a and p indicate that 
the KPZ scaling relation a + a / p = 2  is not fully consistent with the data, but this 
possibility cannot be completely ruled out due to the large error in the values of the 
exponents. However, we are not aware of a compelling argument that would suggest 
that our model should be related to the KPZ model. 

Larralde et al [I31 have recently presented a similar model and studied the growth 
of the colony invaded by N diffusers starting from a single site. In particular they 
analytically obtained the number of distinct visited sites in time I by N diffusers 

the geometries of the source from our study (pointlike sources versus a line of wetting 
fluid), they also did not analyse the growth of the interface roughness with time and 
length. It might be interesting to further study the dynamics of the rough surface with 
a spherically symmetric (pointlike) fluid source. 
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